Elasticity and electrostatics of plectonemic DNA.

نویسندگان

  • N Clauvelin
  • B Audoly
  • S Neukirch
چکیده

We present a self-contained theory for the mechanical response of DNA in single molecule experiments. Our model is based on a one-dimensional continuum description of the DNA molecule and accounts both for its elasticity and for DNA-DNA electrostatic interactions. We consider the classical loading geometry used in experiments where one end of the molecule is attached to a substrate and the other one is pulled by a tensile force and twisted by a given number of turns. We focus on configurations relevant to the limit of a large number of turns, which are made up of two phases, one with linear DNA and the other one with superhelical DNA. The model takes into account thermal fluctuations in the linear phase and electrostatic interactions in the superhelical phase. The values of the torsional stress, of the supercoiling radius and angle, and key features of the experimental extension-rotation curves, namely the slope of the linear region and thermal buckling threshold, are predicted. They are found in good agreement with experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dependence of DNA supercoiling on solution electrostatics.

We develop an elastic-isotropic rod model for twisted DNA in the plectonemic regime. We account for DNA elasticity, electrostatic interactions and entropic effects due to thermal fluctuations. We apply our model to single-molecule experiments on a DNA molecule attached to a substrate at one end, while subjected to a tensile force and twisted by a given number of turns at the other end. The free...

متن کامل

Comment on "Writhe formulas and antipodal points in plectonemic DNA configurations".

We point out that the disagreement between the paper by Neukirch and Starostin [S. Neukirch and E. L. Starostin, Phys. Rev. E 78, 041912 (2008)] and ours [J. Samuel, S. Sinha, and A. Ghosh, J. Phys.: Condens. Matter 18, S253 (2006)] is only apparent and stems from a difference in approach. Neukirch and Starostin are concerned with classical elasticity and individual curves while we focus on sta...

متن کامل

Monte Carlo implementation of supercoiled double-stranded DNA.

Metropolis Monte Carlo simulation is used to investigate the elasticity of torsionally stressed double-stranded DNA, in which twist and supercoiling are incorporated as a natural result of base-stacking interaction and backbone bending constrained by hydrogen bonds formed between DNA complementary nucleotide bases. Three evident regimes are found in extension versus torsion and force versus ext...

متن کامل

Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules.

The response of single DNA molecules to externally applied forces and torques was directly measured using an angular optical trap. Upon overwinding, DNA buckled abruptly as revealed by a sharp extension drop followed by a torque plateau. When the DNA was held at the buckling transition, its extension hopped rapidly between two distinct states. Furthermore, the initial plectonemic loop absorbed ...

متن کامل

Probing the elasticity of DNA on short length scales by modeling supercoiling under tension.

The wormlike-chain (WLC) model is widely used to describe the energetics of DNA bending. Motivated by recent experiments, alternative, so-called subelastic chain models were proposed that predict a lower elastic energy of highly bent DNA conformations. Until now, no unambiguous verification of these models has been obtained because probing the elasticity of DNA on short length scales remains ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 9  شماره 

صفحات  -

تاریخ انتشار 2009